VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year (E.E.E.) I-Semester (Main) Examinations, December - 2015

Electrical Circuits - I

Time: $\mathbf{3}$ hours Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE questions from Part-B

$$
\text { Part-A }(10 \times 2=20 \text { Marks })
$$

1. Define "Resistance" and mention the factors on which it depends.
2. Write the difference between a dependent voltage source and independent voltage source.
3. The average value of an A.C. quantity is 10 units. Find its RMS value.
4. What is the difference between a phasor \& a vector? Also mention the conditions to be satisfied so that a sinusoidal quantity can be represented as a vector.
5. Distinguish between Thevenin \& superposition theorems.
6. Find $\mathrm{I}_{A B}$ (current through branch AB) for the circuit shown in Fig. 1

Fig. 1
7. Define half potwer frequencies. Justify why they are called Half power frequencies.
8. Draw the graph of X_{L} vs. frequency with respect to a series RLC circuit.
9. Write the advantages of 3φ system over a 1φ system.
10. For a two-port network the z-parameters are $0.9,0.2,0.2 \& 0.6$. Find y_{22}.

Part-B $(5 \times 10=50$ Marks $)$

11. a) Find the equivalent current source for the circuit shown in Fig.2.

Fig. 2
b) Deduce the current ' I ' in the circuit shown in Fig.3. All resistances are in ohms.

Contd... 2
12. a) Two impedances $5-7 \mathrm{j}$ and $4+6 \mathrm{j}$ are connected in parallel across $100\left\llcorner 50^{\circ} \mathrm{V}\right.$. Determine the power triangle.
b); An alternating voltage is represented by $v=141.4 \operatorname{Sin}(377 t)$. Find
i) The maximum value
ii) Frequency
iii) Time period
iv) The instantaneous value of voltage when t is 3 ms .
13. a) State and explain Maximum power transfer theorem with respect to AC circuit.
b) Using Thevenin's theorem, find the current through 5Ω resistor for the circuit shown in Fig. 4.

Fig. 4
14. a) Obtain the tie-set matrix for the graph shown in Fig. 5 by considering 2, 3 and 4 as twigs.
b) Obtain the $L_{e q}$ between terminals A and B for the circuit shown in Fig. 6

Fig. 5

Fig. 6
15. a) Derive the relationship between ' z ' \& ' h ' parameters.
b) A $3 \varphi, 3$ wire, 110 V, RYB system supplies a delta connection of three equal impedances of $5 / 45^{\circ}$ Ohms. Determine the line currents $\mathrm{I}_{\mathrm{R}}, \mathrm{I}_{\mathrm{Y}} \& \mathrm{I}_{\mathrm{B}}$ and draw the phasor diagram. [5]
16. a) Write a note on Source transformation.
b) A coil takes a current of 1 A at 0.6 lagging power factor from a $220 \mathrm{~V}, 60 \mathrm{~Hz}$, single phase, 60 Hz supply. If the coil is modeled by a series RL circuit find
i) Complex power in the coil
ii) Values of R \& L.
17. Answer any two of the following:
a) State \& explain Reciprocity theorem for AC networks.
b) Derive for resonance frequency in series R-L-C circuit and half power frequencies.
c) Show that ' h ' parameters are convenient for the combination of two networks with their inputs in series and outputs in parallel.

